

Blockly Programming Manual Page 1 11/4/2023

VIM-303

Blockly Programming Manual

For Firmware Release 2.6.1

Blockly Programming Manual Page 2 11/4/2023

Scope and other documentation
This manual covers how to program the VIM-303 camera in Blockly. Other relevant manuals include:

• Unboxing and Hardware Assembly Manual

• User Interface Manual

• Settings Manual

• First Picks with VIM-303 Manual

Why Blockly?
Blockly enables programmers of all skill levels to program the VIM-303 system. Graphical programming
using Blockly creates a lower barrier to entry for customization of robotic workcells.

Blockly Code Generator
On the VIM-303 camera, Blockly is used as a Python code generator. The Blockly program’s blocks are
compiled into Python code which is executed by the VIM-303 camera to perform the Programmer’s
intended behavior. Each block of Blockly code typically compiles into a single Python statement that
typically calls to the camera’s VIM API (Vision-in-Motion Application Programming Interface).

Toolbox

The Toolbox categorizes every Blockly block that the Programmer can use to program the VIM-303 camera

(Figure 1). Clicking on a category in the Toolbox shows the blocks in that category.

Figure 1 - Blockly Toolbox

Blockly Programming Manual Page 3 11/4/2023

Events

The Events category consists of blocks that relate to starting and stopping the program (Figure 2). Figure 3

shows a table of the various event blocks and their function. Some blocks (such as “when Start is pressed”)

can only be used once in the program. Since every program already includes this block on the blank canvas,

it is shown dimmed.

Figure 2 - Events category

Block Description

when Start is pressed Place as the first block in the program (automatically placed)

when Stop is pressed Optional block, not required in a program
Code to run when stop is pressed (to set robot to a known ending state)

stop Stops the program after running “when Stop is pressed”

Figure 3 - Event blocks

Blockly Programming Manual Page 4 11/4/2023

Logic

The Logic category (Figure 4) consists of an If statement and the associated comparison blocks. The If

statement has a mutator (blue gear) that allows the If statement to morph into various forms, including

else if and else clauses (Figure 5). Click the gear to show the mutator menu. Move the desired block piece

from the left to the right side of the pop up. Then press the gear to remove the pop up. Figure 6 shows a

table of the various logic blocks and their function.

Figure 4 - Logic category

Figure 5 - If statement mutator variants

Block Description

if Enables if, else if, else clauses for conditional execution of code

comparison Compares arguments with equal, not equal, less than, greater than,
less than or equal, greater than or equal

not inverts a logic statement (from true to false or false to true)

true, false logic constants

null comparison to something that doesn’t exist

Figure 6 - Logic blocks

Blockly Programming Manual Page 5 11/4/2023

Loops

The Loops category (Figure 7) consists of various ways to repeat code execution. Figure 8 describes the

functionality of the various loop blocks.

Figure 7 - Loops category

Block Description

repeat forever infinite loop (end program by pressing stop)

repeat N times repeats code N times

repeat while repeats code while a logic condition is true

count with a “for” loop that increments a variable each time through loop

for each item in list a “for” loop that advances through a list

break out of loop end loop or continue to next iteration

Figure 8 - Loops blocks

Blockly Programming Manual Page 6 11/4/2023

Math

The Math category (Figure 9) provides numbers and arithmetic. Figure 10 describes the functionality of

the math blocks.

Figure 9 - Math category

Block Description

number provides a numerical constant

arithmetic provides addition, subtraction, multiplication, division, and
exponentiation of two numbers

Figure 10 - Math blocks

Blockly Programming Manual Page 7 11/4/2023

Text, UI

The Text, UI category (Figure 11) provides debug and code documentation blocks. Figure 12 provides a

description of each of the blocks. The UI blocks in v2.54 are primitive (displaying pop-up windows) but

provide a method for modifying or regulating program operation by the user.

Figure 11 - Text, UI category

Block Description

print prints string or variable to Blockly log on Admin page

“ “ text constant (for use in print or comment)

comment text comment to document code

UI status generates a pop-up window displaying text. Used for displaying status
to the user.

UI alert generates a pop-up window displaying text that must be closed before
program execution continues. Used for requiring the user to perform a
task before the robot continues.

get UI response generates a pop-up window displaying text that requires the user to
provide an input string. The input is returned by the block. Used for
retrieving input from the user to modify program behavior.

Figure 12 - Text, UI blocks

Blockly Programming Manual Page 8 11/4/2023

Delay

The Delay category (Figure 13) provides a single function - a time delay, which is described in detail in

Figure 14.

Figure 13 - Delay category

Block Description

delay delays a programmable number of seconds

Figure 14 - Delay block

Blockly Programming Manual Page 9 11/4/2023

Variables

The Variables category (Figure 15) provides numeric, array, boolean, or string variables that can be set and

read. Figure 16 describes the blocks in detail.

Figure 15 - Variable category

Block Description

create variable create a new variable (places a set of 3 functions into toolbox category)

set sets a variable to a value

change increments a variable

get gets the current value of a variable

Figure 16 - Variable blocks

Blockly Programming Manual Page 10 11/4/2023

Functions

The Functions category allows the Programmer to create subroutines and execute them (Figure 17). The

Function block has a mutator to allow variables to be passed. When a new function is created, new blocks

are created that allow you to call the function (Figure 18). For example, for the function “do something”

the code for the function is in the block “to do something” while calling the function is “do something”.

Figure 19 lists each of the blocks in the function category.

Figure 17 - Function category

Figure 18 - Defining and calling functions

Block Description

to do something create a subroutine

to do something, return create a subroutine (function) that returns something

if, return conditional return statement

do something execute function (“do something” is replaced with function name)

Figure 19 - Function blocks

Blockly Programming Manual Page 11 11/4/2023

Gripper, I/O

The Gripper, I/O category combines I/O functions supported by the robot controller, including actuation

of grippers, digital input, and digital output (Figure 20). Macro blocks which wait for an input to change

and to set an output for a certain period of time, simplify code development and readability. The list of

Gripper blocks is shown in Figure 21.

Figure 20 - Gripper category

Block Description

gripper turns gripper on/off (currently Digital Output 0)

digital input reads state of a digital input

wait for digital input waits until digital input achieves desired state
(often used to synchronize with other equipment)

digital output set state of digital output

set digital output for
duration

set state of digital output for a certain duration
(often used to indicate a state to other equipment)

Figure 21 - Gripper blocks

Blockly Programming Manual Page 12 11/4/2023

Move

The Move category provides blind moves, adjusts robot speed, and provides a list of waypoints created

from the Movement Editor (Figure 22). Moves by default move to “nowhere”, which does nothing. When

a move block is placed in the canvas, the desired waypoint is selected from the pulldown menu. The list

of all of the move blocks is described in Figure 23.

Figure 22 - Move category

Block Description

speed sets robot speed from a pulldown list

move to waypoint moves to a named waypoint

move to variable waypoint moves to a variable that contains a named waypoint

waypoint pulldown list to select a waypoint

move relative move from current location by X,Y,Z offset

Figure 23 - Move blocks

Blockly Programming Manual Page 13 11/4/2023

Pick

The Pick category provides visual and “blind” picks (Figure 24). Visual Pick waits until the desired object is

within the field of view, then moves to the object and picks it. The “blind” pick Pick At moves to the

waypoint and picks whatever is assumed to be there. The Status Of Last Visual Pick block can be used to

determine if the pick was successful. The Pick At With Offset can be used when the waypoint specifies a

surface and the offset specifies the height of the object to be picked. For visual picks, the object defaults

to Any Object (any object that is seen, whether trained or not), but can also be set to Known Object (any

object that has been learned), Unknown Object (any object that has not been learned), or any specific

object that has been learned. Waypoints (used for the blind pick blocks) default to nowhere, but should

be set to a valid waypoint. The list of all of the Pick blocks is described in Figure 25.

Figure 24 – Pick Category

Block Description

visual pick object visually pick an object from the object list

visual pick variable object visually pick an object listed in a variable

status of last visual pick returns success, object_lost, object_out_of_bounds, canceled, error,
ignored, timeout, or unknown

pick at picks object who’s top-center is located at waypoint
moves to top-center, engages gripper, and retracts

pick at with offset blind pick of a variable waypoint with offset from top-center

Figure 25 - Pick blocks

Blockly Programming Manual Page 14 11/4/2023

Waypoint

The Waypoint category provides waypoints created on the Waypoints Tab (Figure 26). A variable can be

set to a waypoint block or the waypoint block can be used directly in various move, pick, and place blocks.

The waypoints can be used directly as parameters for various move, pick, and place blocks. There is only

one block in the Waypoint category, described in Figure 27. This block is also in the Move category for

convenience.

Figure 26 – Waypoint Category

Block Description

waypoint pulldown list to select a waypoint

Figure 27 - Waypoint block

Blockly Programming Manual Page 15 11/4/2023

Place

The Place category provides blocks for placement (Figure 28). Some of the blocks specify a waypoint and

are thus “blind” – moving to a predefined location. Other blocks take parameters for waypoints, which can

be from a waypoint block (for blind placement) or from a variable (which could be set to a visual waypoint).

Place On assumes the top of the object is to be placed at the specified waypoint. Place On assumes the

XXX. The Place At With Offset block allows the surface to be defined by the waypoint and the offset is

typically the height of the object to be placed, which may be computed automatically as a result of a visual

pick. This is used for visual placement or stacking. The Stack block is for blind stacking objects of known

height. The Palletize block provides a high degree of flexibility in placing objects in a grid pattern, described

in Figure 30. The list of the Place blocks is shown in Figure 29.

Figure 28 - Place category

Block Description

place at place object’s top-center at waypoint
moves to top-center + retract, moves to top-center, diengages gripper

place on place object’s top-center at waypoint + height of object
height is based on the object that was picked
will place an object on top of the defined waypoint
moves to top-center + retract, moves to top-center, diengages gripper

place at with offset blind place to variable waypoint with offset from top-center

stack stack top-center of object at waypoint
offset placement location by height per index
(1 = waypoint, 2 = waypoint + height, etc)

palletize blind place in a pallet (see Figure 30)

Figure 29 - Blind blocks

Blockly Programming Manual Page 16 11/4/2023

Palletize

The Palletize block provides a high degree of placement flexibility. Figure 30 shows the five different

configurations for this block, while Figure 31 shows the use of the block on the canvas for the various

configurations. For each configuration, waypoints are used to specify the corner locations of the pallet by

indicating the top-center locations of the object to be palletized. Up to four waypoints can be specified, to

fully define the pallet geometry (A), which can have a rectangular, parallelogram, or trapezoidal shape.

These waypoints are the Bottom Left, Bottom Right, Top Left, and Top Right. The blockly examples (Figure

31) show waypoint definitions (from the Waypoint or Move category) attached to the waypoint sections

of the palletize block. Fewer than four waypoints can be specified, in order to create simpler palletization

scenarios. For example, if the Top Right waypoint is unspecified, this location is extrapolated from the

three specified points (Bottom Left, Bottom Right, and Top Left) as shown in example (B). Linear pallets

can be specified using just two waypoints, using the Bottom Left and Bottom Right, shown in example (C),

or using the Bottom Left and Top Left, shown in example (D). If only the Bottom Left waypoint is specified,

the palletize block will simply stack at the Bottom Left waypoint, shown in example (E).

The number of grid positions between and including the Bottom Left and Bottom Right is specified by the

L-R Positions parameter. Similarly, the number of grid positions between and including the Bottom Left

and Top Left is specified by the T-B Positions parameter.

The Height parameter works the same way as it does for the Blind Stack block, which specifies the height

between layers of the pallet, which is typically the height of the object being palletized.

The ApproachXY and ApproachZ parameters are illustrated in Figure 32. When performing blind

palletization, it is helpful for the robot to bring the object close to its destination and then snug it up to

other objects when close. The ApproachXY parameter specifies the lateral (X,Y) offset (in mm) for initial

placement of the object before moving to the final position. The ApproachZ parameter specifies the

vertical (Z) offset (in mm) from the final position when performing the initial placement. When palletizing

an object with nonzero ApproachXY and ApproachZ parameters specified, the robot will move the object

to the retract distance above the placement location, considering the clearance. It will then lower the

object to the ApproachZ distance above the final placement location, offset in X and Y by the ApproachXY

distance. It will then move to the correct (X, Y) lateral position, still offset in height (Z) by the ApproachZ

distance, and then will finally lower the object to the final location. This is useful to achieve a close-packing

of boxes, for example.

The last parameter, Index, is a variable that starts at 1 to indicate the object should be set at the Bottom

Left location. Incrementing Index will cause the palletize block to compute positions first along the L-R

direction between the Bottom Left and Bottom Right and then increment along the T-B direction between

the Bottom Left and Top Left and then increment in Height. The numbers in Figure 30 indicate the

palletizing order for the first layer.

The names bottom, top, left, and right, are arbitrary. They specify the order that the palletizing algorithm

will compute placement locations. Waypoints can be defined for a different purpose, but it may be useful

for the Programmer to orient themselves when specifying waypoints so that the Bottom Left of the pallet

is oriented accordingly.

Blockly Programming Manual Page 17 11/4/2023

Figure 30 - Pallet Configurations

Figure 31 - Pallet block usage

Figure 32 - Clearance and Lift definition

Blockly Programming Manual Page 18 11/4/2023

Visual, Object

The Visual, Object category includes blocks to visually pick, observe, and identify objects (Figure 33). A list

of all of the visual blocks is shown in Figure 34. One of VIM-303’s outstanding features is the ability to

visually pick an object by name. The visual pick block allows the Programmer to specify the object to be

picked from a pulldown list (Figure 35). The visual pick variable block allows the Programmer to pick an

object that is specified by a variable loaded with a string representing the object, enabling complex run-

time behavior (Figure 35). The create list block allows multiple objects (either variables or the list block)

to be connected to the visual pick variable block. Figure 36 shows how multiple different objects can be

picked, and custom behavior performed depending on which object was picked. For the visual pick one

could select known object instead of a list to pick several types of objects and then perform custom tasks

depending on which object was picked. Figure 37 shows how the status of the visual pick can be used to

handle error conditions. Measurements of the current picked object such as the height is useful for

providing offsets to the placement blocks. If an object is visually picked, the height of the object becomes

known and can be used with the place on block to automatically place a picked object on top of a waypoint.

The visual location of object block is very powerful for visual stacking as a visual waypoint variable can be

created based on the visually observed top of a stack of objects. This can also be used for other visual

placement tasks. An example of visual stacking is shown in Figure 38.

Figure 33 – Visual, Object category

Block Description

visual pick object visually pick an object from the object list

visual pick variable object visually pick an object listed in a variable

is object visible return true if an object(s) is visible

<height> of current object height, length, width of currently picked object

<height> of object height, length, width of object from the object list

status of last visual pick returns success, object_lost, object_out_of_bounds, canceled, error,
ignored, timeout, or unknown

current picked object name return the name of the object that was picked

list of object names provide the name of an object (for a variable or a comparison)

visual location of object location (visual waypoint) of object in field of view

create a list (of objects) create a list (used for selecting multiple objects)

Figure 34 - Visual blocks

Blockly Programming Manual Page 19 11/4/2023

Figure 35 - Visual pick examples

Figure 36 - Visual pick of multiple items

Figure 37 - Error checking of visual picking

Figure 38 – Visual stacking of objects

Blockly Programming Manual Page 20 11/4/2023

Config

The Config category provides the ability to change various system settings (Figure 39). Figure 50 tabulates

the various types of configuration items that can be set in a Blockly program. Settings can also be set in

the Settings tab.

Figure 39 - Config category

Block Description

movement type sets linear or joint moves for waypoint moves and blind pick and place

illumination turn illumination LEDs on/off and set brightness

projector turn IR projector for stereo camera on/off

focus set color camera focus to auto or manual

color exposure set exposure of color camera to auto or manual

stereo exposure set exposure of stereo camera to auto or manual

pursuit mode configures the way picking in motion occurs
track = robot moves camera over object before picking
blind = robot picks object as soon as it is seen

pick orientation for 2 finger gripper, which orientation of the object to pick

object picking order configures the way objects are selected
tallest = tallest object in field of view
newest = most recent object seen

surface height sets manual or automatic surface height

retract distance configures the retract distance for pick and place

Figure 40 - Config blocks

Blockly Programming Manual Page 21 11/4/2023

Sample Programs

The next few pages illustrate some sample programs that demonstrate the simplicity of creating powerful

robotic tasks.

Visual Pick and Blind Place

The simplest example of a visual pick and blind place is shown in Figure 41. When the Start button is

pressed, the robot moves to the waypoint PickZone. It visually picks the object Box, whether it be statically

within the field of view or if it is moving, such as on a conveyor. Once the object has been picked, the robot

moves to the waypoint PlaceZone and sets the object down.

Figure 41 - Simple visual pick and blind place

Visual Pick from Conveyor and Palletize

Figure 42 shows a palletizing example. Six cards are picked from a conveyor and palletized on a grid of 3x2.

Pursuit mode is set to track to optimize the performance of picking in motion. The retract distance is

customized to ensure that the cards are lifted off the conveyor high enough to let other objects move

beneath. After picking the cards, the robot is moved to the PlaceZone, above the pallet. The four corners

of the pallet are defined by waypoints BL, BR, TL, and TR. The grid pattern is specified 3x2 with L-R positions

and T-B positions. A multi-layer palletization can occur because the height is specified as the height of the

cards object. The ApproachXY and ApproachZ are specified to ensure a tight packing of the cards. The

variable cards is used to index through the pallet.

Figure 42 – Visual Pick from Conveyor and Palletize

Blockly Programming Manual Page 22 11/4/2023

Visual Placement of an Object on another Object

Figure 43 shows a simple example of visual placement of a deck of cards onto a box. Because an object

may obscure the camera once it’s picked, the robot moves to the place zone and the camera records the

location of the box in the variable TopOfStack. Then the cards are picked from the PickZone. Using the

“place on” block, the cards are placed on top of the previously recorded visual location of the top of the

box, automatically offset by the height of the object that was picked (the cards).

Figure 43 – Visual Placement

Visual Stacking

The concepts involved in visual placement can be expanded to implement visual stacking (Figure 44). The

program starts exactly the same way as the visual placement example from Figure 43. The top of the box

is visually located and saved in the variable TopOfStack. Four cards are sequentially picked using the repeat

loop and the move to PickZone and visual pick of Cards. Each card is visually placed on the top of the stack

using the “place on” block. After a deck of cards has been placed, the robot moves to the PlaceZone and

locates the new top of the stack using the “visual location of Cards” block to update the TopOfStack

variable. Powerful visual placement programs can be developed using these concepts.

Figure 44 – Visual Stacking

Blockly Programming Manual Page 23 11/4/2023

Visual Sorting

Figure 45 shows an example of visual sorting of Boxes and Cards from a conveyor. This program assumes

that Box and Cards are the only objects that have been learned (in the workspace where the program

resides). This allows a very simple visual picking block of “visual pick Known Object”. The robot is at the

PickZone and waits for either a Box or Cards to be seen coming down the conveyor. It picks the object,

whatever it is and the identity (name) of the object is available in the “current picked object” block which

is used with an “if” statement to check if the picked object matches either the Box or the Cards. Different

actions (such as placing on a particular conveyor) can be performed based on whatever object was picked.

Complex visual sorting tasks can be accomplished using these methods.

Figure 45 – Visual Sorting

