

VIM-303 User Interface Manual Page 1 9/29/2023

VIM-303

Blockly Programming

Manual

For Firmware Release 2.6.0

VIM-303 User Interface Manual Page 2 9/29/2023

Scope and other documentation
This manual covers how to program the VIM-303 camera in Blockly. Other relevant manuals include:

• Unboxing and Hardware Assembly Manual

• User Interface Manual

• Settings Manual

• First Picks with VIM-303 Manual

Why Blockly?
Blockly enables programmers of all skill levels to program the VIM-303 system. Graphical programming
using Blockly creates a lower barrier to entry for customization of robotic workcells.

Blockly Code Generator
On the VIM-303 camera, Blockly is used as a Python code generator. The Blockly program’s blocks are
compiled into Python code which is executed by the VIM-303 camera to perform the Programmer’s
intended behavior. Each block of Blockly code typically compiles into a single Python statement that
typically calls to the camera’s VIM API (Vision-in-Motion Application Programming Interface).

Toolbox

The Toolbox categorizes every Blockly block that the Programmer can use to program the VIM-303 camera

(Figure 1). Clicking on a category in the Toolbox shows the blocks in that category.

Figure 1 - Blockly Toolbox

VIM-303 User Interface Manual Page 3 9/29/2023

Events

The Events category consists of blocks that relate to starting and stopping the program (Figure 2). Figure 3

shows a table of the various event blocks and their function.

Figure 2 - Events category

Block Description

when Start is pressed Place as the first block in the program

when Stop is pressed Optional block, not required in a program
Code to run when stop is pressed (to set robot to a known ending state)

stop Stops the program after running “when Stop is pressed”

Figure 3 - Event blocks

VIM-303 User Interface Manual Page 4 9/29/2023

Logic

The Logic category (Figure 4) consists of an If statement and the associated comparison blocks. The If

statement has a mutator (blue gear) that allows the If statement to morph into various forms, including

else if and else clauses (Figure 5). Click the gear to show the mutator menu. Move the desired block piece

from the left to the right side of the pop up. Then press the gear to remove the pop up. Figure 6 shows a

table of the various logic blocks and their function.

Figure 4 - Logic category

Figure 5 - If statement mutator variants

Block Description

if Enables if, else if, else clauses for conditional execution of code

comparison Compares arguments with equal, not equal, less than, greater than,
less than or equal, greater than or equal

not inverts a logic statement (from true to false or false to true)

true, false logic constants

null comparison to something that doesn’t exist

Figure 6 - Logic blocks

VIM-303 User Interface Manual Page 5 9/29/2023

Loops

The Loops category (Figure 7) consists of various ways to repeat code execution. Figure 8 describes the

functionality of the various loop blocks.

Figure 7 - Loops category

Block Description

repeat forever infinite loop (end program by pressing stop)

repeat N times repeats code N times

repeat while repeats code while a logic condition is true

count with a “for” loop that increments a variable each time through loop

for each item in list a “for” loop that advances through a list

break out of loop end loop or continue to next iteration

Figure 8 - Loops blocks

VIM-303 User Interface Manual Page 6 9/29/2023

Math

The Math category (Figure 9) provides numbers and arithmetic. Figure 10 describes the functionality of

the math blocks.

Figure 9 - Math category

Block Description

number provides a numerical constant

arithmetic provides addition, subtraction, multiplication, division, and
exponentiation of two numbers

Figure 10 - Math blocks

VIM-303 User Interface Manual Page 7 9/29/2023

Text, UI

The Text, UI category (Figure 11) provides debug and code documentation blocks. Figure 12 provides a

description of each of the blocks. The UI blocks in v2.54 are primitive (displaying pop-up windows) but

provide a method for modifying or regulating program operation by the user.

Figure 11 - Text, UI category

Block Description

print prints string or variable to Blockly log on Admin page

“ “ text constant (for use in print or comment)

comment text comment to document code

UI status generates a pop-up window displaying text. Used for displaying status
to the user.

UI alert generates a pop-up window displaying text that must be closed before
program execution continues. Used for requiring the user to perform a
task before the robot continues.

get UI response generates a pop-up window displaying text that requires the user to
provide an input string. The input is returned by the block. Used for
retrieving input from the user to modify program behavior.

Figure 12 - Text, UI blocks

VIM-303 User Interface Manual Page 8 9/29/2023

Delay

The Delay category (Figure 13) provides a single function - a time delay, which is described in detail in

Figure 14.

Figure 13 - Delay category

Block Description

delay delays a programmable number of seconds

Figure 14 - Delay block

VIM-303 User Interface Manual Page 9 9/29/2023

Variables

The Variables category (Figure 15) provides numeric, array, boolean, or string variables that can be set and

read. Figure 16 describes the blocks in detail.

Figure 15 - Variable category

Block Description

create variable create a new variable (places a set of 3 functions into toolbox category)

set sets a variable to a value

change increments a variable

get gets the current value of a variable

Figure 16 - Variable blocks

VIM-303 User Interface Manual Page 10 9/29/2023

Functions

The Functions category allows the Programmer to create subroutines and execute them (Figure 17). The

Function block has a mutator to allow variables to be passed. When a new function is created, new blocks

are created that allow you to call the function (Figure 18). For example, for the function “do something”

the code for the function is in the block “to do something” while calling the function is “do something”.

Figure 19 lists each of the blocks in the function category.

Figure 17 - Function category

Figure 18 - Defining and calling functions

Block Description

to do something create a subroutine

to do something, return create a subroutine (function) that returns something

if, return conditional return statement

do something execute function (“do something” is replaced with function name)

Figure 19 - Function blocks

VIM-303 User Interface Manual Page 11 9/29/2023

Gripper, I/O

The Gripper, I/O category combines I/O functions supported by the robot controller, including actuation

of grippers, digital input, and digital output (Figure 20). Macro blocks which wait for an input to change

and to set an output for a certain period of time, simplify code development and readability. The list of

Gripper blocks is shown in Figure 21.

Figure 20 - Gripper category

Block Description

gripper turns gripper on/off (currently Digital Output 0)

digital input reads state of a digital input

wait for digital input waits until digital input achieves desired state
(often used to synchronize with other equipment)

digital output set state of digital output

set digital output for
duration

set state of digital output for a certain duration
(often used to indicate a state to other equipment)

Figure 21 - Gripper blocks

VIM-303 User Interface Manual Page 12 9/29/2023

Move

The Move category provides blind moves, adjusts robot speed, and provides a list of waypoints created

from the Movement Editor (Figure 22). Moves by default move to “nowhere”, which does nothing. When

a move block is placed in the canvas, the desired waypoint is selected from the pulldown menu. The list

of all of the move blocks is described in Figure 23.

Figure 22 - Move category

Block Description

speed sets robot speed from a pulldown list

move to waypoint moves to a named waypoint

move to variable waypoint moves to a variable that contains a named waypoint

waypoint pulldown list to select a waypoint

move relative move from current location by X,Y,Z offset

Figure 23 - Move blocks

VIM-303 User Interface Manual Page 13 9/29/2023

Blind

The Blind category provides blind macro blocks for pick and place (Figure 24). Detailed descriptions of the

blind blocks is shown in Figure 25. The blind blocks move to specified locations, defined by waypoints,

rather than using vision to guide the destination.

Blind pick assumes the top of the object is located at the specified waypoint. The robot will move above

this location, per the retract distance (programmed with a config block), move down to touch the object,

actuate the gripper, and lastly, retract.

Blind place moves above the placement location per the retract distance, moves down to the specified

waypoint, releases the gripper, and lastly retracts.

Blind stack is used to repeatedly place objects one upon another. The index specifies the height to place

the object. The first time the blind stack is called, use index = 1 and it will place at the specified waypoint.

Calling blind stack with an index greater than 1 will place at the specified waypoint offset in Z by the stack

height per object.

Blind palletize provides a high degree of flexibility in placing objects in a grid pattern, described in Figure

26.

Figure 24 - Blind category

Block Description

blind pick picks object who’s top-center is located at waypoint
moves to top-center, engages gripper, and retracts

blind pick with offset blind pick of a variable waypoint with offset from top-center

blind place blind place object’s top-center at waypoint
moves to top-center + retract, moves to top-center, disengages gripper

blind place with offset blind place to variable waypoint with offset from top-center

blind stack stack top-center of object at waypoint
offset placement location by height per index

blind palletize blind place in a pallet (see Figure 26)

Figure 25 - Blind blocks

VIM-303 User Interface Manual Page 14 9/29/2023

Blind Palletize

The Blind Palletize block provides a high degree of placement flexibility. Figure 26 shows the five different

configurations for this block, while Figure 27 shows the use of the block on the canvas for the various

configurations. For each configuration, waypoints are used to specify the corner locations of the pallet by

indicating the top-center locations of the object to be palletized. Up to four waypoints can be specified, to

fully define the pallet geometry (A), which can have a rectangular, parallelogram, or trapezoidal shape.

These waypoints are the Bottom Left, Bottom Right, Top Left, and Top Right. The blockly examples (Figure

27) show waypoint definitions (from the Move category) attached to the waypoint sections of the palletize

block. Fewer than four waypoints can be specified, in order to create simpler palletization scenarios. For

example, if the Top Right waypoint is unspecified, this location is extrapolated from the three specified

points (Bottom Left, Bottom Right, and Top Left) as shown in example (B). Linear pallets can be specified

using just two waypoints, using the Bottom Left and Bottom Right, shown in example (C), or using the

Bottom Left and Top Left, shown in example (D). If only the Bottom Left waypoint is specified, the palletize

block will simply stack at the Bottom Left waypoint, shown in example (E).

The number of grid positions between and including the Bottom Left and Bottom Right is specified by the

L-R Positions parameter. Similarly, the number of grid positions between and including the Bottom Left

and Top Left is specified by the T-B Positions parameter.

The Height parameter works the same way as it does for the Blind Stack block, which specifies the height

between layers of the pallet, which is typically the height of the object being palletized.

The Clearance and Lift parameters are illustrated in Figure 28. When performing blind palletization, it is

helpful for the robot to bring the object close to its destination and then snug it up to other objects when

close. The Clearance parameter specifies the lateral (X,Y) offset (in mm) for initial placement of the object

before moving to the final position. The Lift parameter specifies the vertical (Z) offset (in mm) from the

final position when performing the initial placement. When palletizing an object with nonzero Clearance

and Lift parameters specified, the robot will move the object to the retract distance above the placement

location, considering the clearance. It will then lower the object to the Lift distance above the final

placement location, offset in X and Y by the Clearance distance. It will then move to the correct (X, Y)

lateral position, still offset in height (Z) by the Lift distance, and then will finally lower the object to the

final location. This will have the effect of close-packing boxes, for example.

The last parameter, Index, is a variable that starts at 1 to indicate the object should be set at the Bottom

Left location. Incrementing Index will cause the palletize block to compute positions first along the L-R

direction between the Bottom Left and Bottom Right and then increment along the T-B direction between

the Bottom Left and Top Left and then increment in Height. The numbers in Figure 26 indicate the

palletizing order for the first layer.

The names bottom, top, left, and right, are arbitrary. They specify the order that the palletizing algorithm

will compute placement locations. Waypoints can be defined for a different purpose, but it may be useful

for the Programmer to orient themselves when specifying waypoints so that the Bottom Left of the pallet

is oriented accordingly.

VIM-303 User Interface Manual Page 15 9/29/2023

Figure 26 - Pallet Configurations

Figure 27 - Pallet block usage

Figure 28 - Clearance and Lift definition

VIM-303 User Interface Manual Page 16 9/29/2023

Visual

The Visual category includes blocks to visually pick, observe, and identify objects (Figure 29). A list of all of

the visual blocks is shown in Figure 30. One of VIM-303’s outstanding features is the ability to visually pick

an object by name. The visual pick block allows the Programmer to specify the object to be picked from a

pulldown list (Figure 31). The visual pick variable block allows the Programmer to pick an object that is

specified by a variable loaded with a string representing the object, enabling complex run-time behavior

(Figure 31). The create list block allows multiple objects (either variables or the list block) to be connected

to the visual pick variable block. Figure 32 shows how multiple different objects can be picked, and custom

behavior performed depending on which object was picked. Figure 33 shows how the status of the visual

pick can be used to handle error conditions.

Figure 29 - Visual category

Block Description

visual pick object visually pick an object from the object list

visual pick variable object visually pick an object listed in a variable

is object visible return true if an object(s) is visible

current picked object name return the name of the object that was picked

status of last visual pick returns success, object_lost, object_out_of_bounds, canceled, error,
ignored, timeout, or unknown

list of object names provide the name of an object (for a variable or a comparison)

create a list (of objects) create a list (used for selecting multiple objects)

Figure 30 - Visual blocks

VIM-303 User Interface Manual Page 17 9/29/2023

Figure 31 - Visual pick examples

Figure 32 - Visual pick of multiple items

Figure 33 - Error checking of visual picking

VIM-303 User Interface Manual Page 18 9/29/2023

Config

The Config category provides the ability to change various system settings (Figure 34). Figure 35 tabulates

the various types of configuration items that can be set in a Blockly program. Settings can also be set in

the Settings tab.

Figure 34 - Config category

Block Description

movement type sets linear or joint moves for waypoint moves and blind pick and place

illumination turn illumination LEDs on/off and set brightness

projector turn IR projector for stereo camera on/off

focus set color camera focus to auto or manual

color exposure set exposure of color camera to auto or manual

stereo exposure set exposure of stereo camera to auto or manual

pursuit mode configures the way picking in motion occurs
track = robot moves camera over object before picking
blind = robot picks object as soon as it is seen

object picking order configures the way objects are selected
tallest = tallest object in field of view
newest = most recent object seen

surface height sets manual or automatic surface height

retract distance configures the retract distance for pick and place

Figure 35 - Config blocks

VIM-303 User Interface Manual Page 19 9/29/2023

Sample Programs

The simplest example of a visual pick and blind place is shown in Figure 36. When the Start button is

pressed, the robot moves to the waypoint PickZone. It visually picks the object Cards, whether it be

statically within the field of view or if it is moving, such as on a conveyor. Once the object has been picked,

the robot moves to the waypoint PlaceZone and sets the object down.

Figure 36 - Simple visual pick and blind place

Figure 37 shows a palletizing example. Six cards are picked from a conveyor and palletized on a grid of 3x2.

The variable Cards is used to index through the pallet.

Figure 37 - Palletizing example

VIM-303 User Interface Manual Page 20 9/29/2023

Figure 38 shows a complex visual picking example. Cards and M&Ms are picked from a conveyor and sorted

into two different locations. The beginning of the program defines the surface height of the conveyor, sets

the pursuit mode to Track for the best picking accuracy, and sets the retract distance to ensure that taller

objects are placed properly. Two variables, Cards and MMs, are used to keep track of the state of the

palletizing and stacking. Visual picking is done with a list of two objects, Cards and MandMs. Depending

on the object that was picked, one of two functions, PalletizeCards and StackMMs, is called. The

PalletizeCards function increments the Cards variable and performs a palletization of the cards on a 3x2

grid. The StackMMs function increments the MMs variable and performs a stacking of the M&Ms.

Figure 38 - Visual sorting example

