
Blockly Goes to Work:
Block-based Programming for Industrial Robots

David Weintrop
College of Education

College of Information Studies
University of Maryland

weintrop@umd.edu

David C. Shepherd
ABB Corporate Research

david.shepherd@us.abb.com

Patrick Francis
ABB Corporate Research

patrick.francis@us.abb.com

Diana Franklin
UChicago STEM Education

Department of Computer Science
University of Chicago

dmfranklin@uchicago.edu

Abstract— The block-based approach to programming is an
effective way to engage young learners in programming and the
powerful ideas of computing. In this paper, we explore the
potential of using this same approach in a very different
programming context: industrial robotics. Using a customized
language built with the Blockly library, we created a block-based
interface for programming a one-armed industrial robot. This
paper presents a block-based robot programming language
called Robot Blockly, focusing on how the various affordances of
block-based programming were utilized to make the challenge of
robot programming more accessible. We also present results
from a small-scale study showing adults with no prior
programming experience successfully programming a virtual
robot to accomplish a pick and place task. The contribution of
this work is in showing the potential for block-based
programming beyond young learners and classrooms.

Keywords—block-based programming, robot programming,
graphical programming

I. INTRODUCTION

Technology is changing our world. This can be seen across
diverse domains and sectors, including industrial
manufacturing, where manual labor jobs once filled by large
numbers of individuals are steadily being automated with
machines. In the United States, despite record levels of
manufacturing output, manufacturing jobs are stagnant [1].
While there are many factors that contribute to this trend, one
component is the improvement of technological infrastructure
and the introduction of automated elements to the
manufacturing process [2]. Whereas American manufacturing
jobs have declined, particularly in less technologically-
intensive sectors, other countries have seen less job loss by
restructuring their manufacturing base to emphasize more
technologically intensive sectors [3]. Similarly, others have
argued that the emergence of technology and automation does
not replace jobs, instead; it changes them and the skills needed
by members of the workforce [4].

In this new, computationally-driven manufacturing
economy, programming is becoming a valuable skill for
workers to be able to contribute and succeed. However,

programming takes years to master, especially given the fact
that the current programming languages used in industrial
settings are designed by engineers, for engineers. This means
writing the programs necessary to enable the shift toward
automation requires years of training, often resulting in the
need to hire expensive specialists in order to program even the
most basic routines. A side effect of this reality is that robotics
projects requiring programming often stall or are not even
considered due to the expense associated with hiring
developers to implement the desired automation routines.
However, advances in the design of programming
environments for novices may present an alternative path
forward for robot programming.

Alongside the growth in computationally-intensive
manufacturing jobs, there has been substantial progress made
in the design of tools and technologies to make programming
more accessible and intuitive. In particular, the emergence of
the block-based programming paradigm has resulted in dozens
of programming tools that have introduced millions of young
learners to the powerful concepts of computing [5]. This
includes robotics construction kits and toys like Lego
Mindstorms, Dash and Dot, and Ozobots.

While early work in end-user programming and visual
programming languages interfaces was driven by the goal of
making computers and programming accessible to
professionals [6], the last twenty years of design innovation to
make programming more accessible has largely focused on
younger learners [7], [8]. The successes of these child-oriented
innovations suggest that lessons learned from this work might
also be effective for industrial robot programming. In this
work, we seek to bring these two lines of work back together,
investigating if and how block-based programming can be used
in service of professional ends, specifically, the task of
industrial robotics programming. This paper introduces Robot
Blockly, a block-based programming interface for ABB’s
Roberta, a single-armed industrial Robot (Fig. 1) and present
results from a user study showing novices with no prior
programming experience successfully writing programs to
accomplish basic robotics tasks.

2017 IEEE Blocks and Beyond Workshop

978-1-5386-2480-7/17/$31.00 ©2017 IEEE 29

Fig. 1. The Robot Blockly programming environment. The left side of the environment contains the block-based robot programming interface for Roberta, shown
on the right.

We begin this paper by reviewing prior work that informed
the design of Robot Blockly. We then introduce Robot
Blockly, describing features of the environment and how it
takes advantage of the affordances of block-based
programming in order to make the task of programming an
industrial robot more accessible. Next, we present the user
study including the study design, participant information, and
findings. The paper concludes with a discussion of the results,
the larger potential of block-based programming beyond
younger learners, and next steps for this line of work.

II. PRIOR WORK

In this section, we review the three main literatures that
informed this work: end-user programming for robots,
graphical approaches to robot programming, and block-based
programming.

A. End-User Programming for Robotics
End-user programming is defined as programming to

achieve the result of a program primarily for personal, rather
public use” [9]. In the case of robot programming, this means
the author is writing a routine for a specific, immediate task,
as opposed to creating a general-purpose program or a
template script that others will later modify. Our focus on end-
user robotics programming languages is due to our interest in
making the power of industrial robots accessible to a wider
audience of potential users, including those employed in the
industrial sector as well as entrepreneurs and small business
owners.

For as long as there have been robots, there have been
robot programming languages. Lozano-Pérez [10], in an early
paper on the landscape of robot programming tools, broke the
space down into three over-arching categories: guiding
systems, robot-level programming systems, and task-level
programming system. To date, guiding systems, notably, the

programming-by-demonstration approach [11], has been the
predominant end-user programming strategy used in robotics.
This type of programming involves physically moving the
robot into a desired position and then recording it.
Programming-by-demonstration is often used in conjunction
with text-based robotics programming. A more recent
categorization of robot programming focuses more closely on
characteristics of the programming task, breaking the robot
programming landscape into automatic programming tools
(e.g. programming-by-demonstration, learning systems, etc.),
manual programming tools (e.g. text-based programming
languages, flowchart systems, etc.), and software architectures
(tools and libraries used to support the robot programming
tasks) [12]. The manual programming category is divided into
text-based and graphical programming systems, with the
graphical subgroups being further decomposed into graph
systems, flowchart systems, and diagrammatic systems.
Within this taxonomy, the work we present in this paper falls
under the graphical programming system categorization, but in
a new sub-genre, the authors did not include: Block-based
programming. Given this positioning, we present a more
detailed review of graphical robot programming systems in the
next section.

B. Graphical Robot Programming
Graphical programming replaces text-based instructions

with icons, diagrams, or some other graphical representation
that can be rendered in two dimensions which can then be
manipulated by the user to define instructions for the robot to
follow [13]. A number of graphical programming tools have
been created to support robot programming. The most well-
known of which is the Lego Mindstorms tool (Fig. 2a), which
uses visual blocks to represent basic robot actions which the
user can organize to produce desired outcomes [14]. This
approach shares features with the block-based approach we

30

use with Robot Blockly that is the focus of this paper. The
major difference between Robot Blockly and Lego
Mindstorms is the role that text plays and the closeness of
mapping between the graphical programming interface and
text-based alternatives. A second graphical approach to robot
programming can be seen with MORPHA (Fig. 2b), which
uses an icon-based approach and flowchart-like layout to let
users define instructions for their robot [15]. MORPHA was
intended to be used in industry but never achieved widespread
adoption, in part due to the challenge of interpreting its
symbols. A third example of a graphical programming tool
can be seen with the DD-Designer (Fig. 2c), which takes a
behavior-based approach and uses a data processor
hypergraph layout to give the author control over the robot. In
presenting these different graphical approaches to robot
programming we are trying to highlight different strategies
taken to date that can be contrasted with the block-based
approach we user for Robot Blockly.

(a) (b) (c)
Fig. 2. Three examples of graphical robot programming tools: (a) Lego
Mindstorms, (b) MORPHA, and (c) DD-Designers.

C. Block-based Programming
The block-based programming approach used in Robot

Blockly blends affordances of the graphical approach to robot
programming discussed above with characteristics of
conventional text-based programming. Block-based
programming is an increasingly popular approach in the
design of introductory programming environments that uses a
programming-command-as-puzzle-piece metaphor to present
commands to the user. Writing a program in a block-based
environment takes the form of dragging-and-dropping
instructions together on screen. Each individual command
includes visual information about how and where it can be
used, ensuring that incompatible instructions cannot be
combined, thus preventing syntax errors in the program.
Additionally, block-based programming environments include
a number of features that have been identified as productive
for novice programmers, including supporting natural
language commands, presenting available commands in
logically ordered and easily browsed ways, and having a drag-
and-drop assembly mechanism that is easier and faster than
typing command character-by-character with the keyboard
[16]. A growing body of literature is showing that the block-
based approach to programming is an effective way to enable

novices to write successful programs with little prior
experience and can serve as an accessible introduction to
programming [17]–[19].

Led by the popularity of block-based tools including
Scratch [20] and Alice [21], there is a growing ecosystem of
block-based environments that support a variety of
programming activities. Alice [21], and other block-based
tools like AgentCubes [22], are noteworthy in that they allow
the user to program simulations in three dimensions, akin to
the type of movements supported in Robot Blockly. While
much of the focus of block-based tools has been on the
creation of digital media (like stories, animations, and games),
block-based programming environments exist for modeling
and simulation tools [23]–[25], mobile application
development [26], [27], playing video games [28], [29], and
manipulating media [30]. At the same time, there are a
growing number of libraries and tools designed to make it
easy to create new block-based languages or embed block-
based programming interfaces into existing applications [31],
[32]. Finally, the block-based programming approach has been
used in robotics kits for kids, like the aforementioned Lego
Mindstorms, as well as Open Roberta, Dash and Dot, and the
Finch Robot. Collectively, the variety of applications for
which block-based programming has been applied, along with
the growing evidence of its effectiveness, suggests there is
potential for bringing this programming approach to the world
of industrial robotics programming.

III. MEET ROBOT BLOCKLY
Robot Blockly (Fig. 1) is a block-based programming

environment designed for Roberta, a one-armed industrial
robot. Using the robot programming categorizations discussed
in the literature review [10], [12], Robot Blockly is a robot-
level programming system and a manual programming tool.
As shown in Fig. 1, the interface of Robot Blockly is broken
down into two distinct panes: the Blockly pane and the Robot
pane. The Blockly pane contains the block-based
programming interface in which programs are defined, while
the Robot Pane shows a virtual version of Roberta and is used
to both position the robot during program construction and
watch a program run after it is completed. The program shown
in Fig. 1 is a pick and place routine that was authored by a
participant in the study, running this program results in the
virtual robot picking up the blue block and placing it on the
green pedestal.

Writing a program with Robot Blockly requires users to
move back and forth between the two panes of the interface.
Users start by defining a set of steps for the robot to follow by
dragging-and-dropping commands and placing them under the
maroon colored start block (shown in Fig. 4a). Users define
movement commands by adding the move block to their
program. The text on the move block reads: Move quickly
to <somewhere>, with quickly and <somewhere>
being dropdown menus that allow the user to customize the
movement of the robot arm. To tell the robot arm where to
move, the user creates a Location, which defines and names a
robot position, including its x, y, and z coordinate in the Robot

31

pane and the orientation of the gripper. To do this, the user
selects the Add Location option in the dropdown showing
<somewhere>. When this happens, the Robot pane becomes
active, with arrows emerging from the robot’s gripper along
the x, y, and z axes (Fig. 3a). The user can then click-and-drag
on the three arrows to position the robot arm. Once the robot
is in position, the user clicks a check box at the top of the
screen, gives a name to the Location (e.g. Start, as seen in
Fig. 1). Once the Location is defined, control returns to the
Blockly pane, and the <somewhere> text in the dropdown is
replaced with the newly entered name. The resulting
command now reads: Move quickly to Start. This
process is similar to the programming-by-demonstration
approach commonly used in robotics programming, just
replacing the physical robot with a virtual one and introducing
the programming construct of a Location that can be reused
throughout the block-based program.

At any point during program development, the user can
click the play button at the top of the interface to watch a
simulation of Roberta carrying out the programmed
instructions. When the user clicks the play button, the Robot
Blockly instructions are transpiled into the pre-existing text-
based Robot programming language that Roberta is
traditionally programmed with. In this way, the Robot Blockly
language can be thought of as a layer of abstraction that lives
on top of the native robot programming language in order to
make programming more intuitive and accessible.

(a) (b)
Fig. 3. (a) The Robot pane interface when users are defining a Location. (b)
The Pick and Place Robot Recipe.

A. The Robot Blockly Language
The block-based language used in Robot Blockly is

designed specifically for the task of programming Roberta and
takes advantage of a number of affordances made possible by
the block-based modality. The goal of the language is to
abstract away unnecessary detail from the user and present an
easily-understood set of instructions to programming novices.
Along with conventional programming constructs (like
conditional logic, looping commands, and variables), the
Robot Blockly language includes three custom block types.
The first unique command controls the robot’s gripper. The
text on the block reads open hand, where open is a
dropdown menu with two options: open and close. The
second custom block in Robot Blockly is the move block

discussed in this last section. The move command reads Move
quickly to <somewhere>, where quickly is a dropdown
containing the options: quickly, moderately, and
slowly, which control the speed of the robot movements.
The second dropdown has the default value of <somewhere>
and includes all the Locations that have been defined in the
program along with an option to define a new Location.

The final custom command in Robot Blockly’s language is
the inclusion of Robot Recipes. Robot Recipes are predefined
functions that serve as templates for commonly carried out
actions. In the study presented below, the environment
includes a single Robot Recipe called Pick and Place,
shown in Fig. 3b. The Pick and Place recipe defines the
sequence of steps a robot follows in order to pick up an object
in one location and place it somewhere else; which is a very
common task for industrial robots to carry out. Robot Recipes
are comprised of blocks available to the user, with suggestive
default arguments provided to help make the template easier
to follow. For example, in the Pick and Place recipe, the
first Move command reads Move quickly to <approach
to pick>, which is meant to let the user know the first
Location to be defined is where you want to put the robot arm
ahead of its approach to the pickup position.

B. Block-based Affordances in Robot Blockly
The design of Robot Blockly takes advantage of a number

of the affordances that come with block-based programming.
These affordances include many of the features common to
block-based environments, such as the visual cues on blocks
denoting how they can be used and the ease of discovering
new commands due to the organization and presentation of
commands in the block drawers on the left-hand side of the
programming canvas. Additionally, Robot Blockly retains the
“tinkerability” of block-based programming environments,
meaning it is easy to try things out and make small,
incremental changes while developing a program. Beyond
these features common across all block-based environments,
the design of Robot Blockly further leverages four block-
based programming features which we will discuss in greater
detail below: (1) its use of natural language expressions in
programming commands, (2) the ability to include images
alongside text in commands, (3) the dynamic rendering (and
re-rendering) of commands, and (4) the logical organization of
scripts on the blocks canvas.

The first affordance of block-based programming utilized
by Robot Blockly is the ability for the labels on the commands
to use natural language expressions and images to convey
meaning and greatly simplify both the comprehension of
existing programs and the composing of new programs. For
example, the Location construct in Robot Blockly allows users
to provide a simple label (like Start) to define the exact
position and orientation in a program for Roberta. A single
Location in a Robot Blockly program replaces a set of 17
numbers that would otherwise need to be typed in to specify
the exact position of each component of the robot arm. A
second example that further demonstrates the power of natural
language in Robot Block is the Move command that has been

32

referenced a number of times in this manuscript. A call to
Move, which in Robot Blockly might read: Move quickly
to start would take the following form in the conventional
Roberta programming language: MoveJ rb_Location1,
v1000, fine, tGripper, \WObj:=blocklyWobj_1,
where Movej defines the type of movement, rb_Locaiton1
is the 17-argument position mentione above, v1000 is the
speed of the movement, fine defines the desired level of
accuracy, tGripper defines the tool attached to the end of
the robot, and finally, the /WObj expression further defines
characteristics of the environment. Additionally, there are
other move commands, such as MoveL, that users need to
distinguish between, further complicating the creation of
relatively simple programs. While the Robot Blockly version
of this command loses some of the detailed control that the
conventional text version has (e.g. the user cannot change the
level of accuracy for the movement), doing so makes the
commands clearer and hides details that are not necessary for
a majority of uses, especially routine behaviors.

Another example of how Robot Blockly takes advantage
of the ability of the block-based modality is its blending of
text and images within blocks, as can be seen in the start block
(Fig. 4a). In this case, it embeds the image of the play button
of the runtime environment into its label to help users link the
instructions added under the block with the button that needs
to be pushed to begin execution of the program.

(a) (b)

Fig. 4. (a) Robot Blockly’s start block that blends text and images. (b) The
warning icon and accompanying message for not-yet-configured Move
commands.

A third way that Robot Blockly takes advantage the block-
based programming approach is in its use of the dynamic
rendering capabilities of blocks to present additional
information. When a Move block is added to a program, it
starts with a default Location argument of <somewhere>,
which serves as a placeholder until the user defines it. With
Blockly’s dynamic rendering feature, we can add a warning
icon with a message letting users know that the block needs to
be configured before it is used, shown in Fig. 4b. Further, after
a Location is defined, the block automatically updates to use
the new Location.

The final way that Robot Blockly leverages features of the
block-based approach to programming is in its ability to
automatically organize programs into organized columns, as
can be seen in Fig. 1. The left column of Robot Blockly will
always be the main function of the program, with the second
column comprised of the other blocks used in the program
(most often being Robot Recipes, but also sometimes includes
blocks put off to the side). The outcome of this features is the
users can easily see all of their commands at the same time
with calls to Robot Recipes being positioned alongside the
recipe definitions.

IV. METHODS AND PARTICIPANTS
Having introduced Robot Blockly and discussed some of

the ways that the environment utilizes features of the block-
based approach to programming, we now present the methods
and study design used for our initial evaluation of the
environment. This paper presents results from a small-scale
user study where participants were asked to write two basic
programs in the Robot Blockly environment in a one-on-one
interview setting. The interviews began with a short (7
minute) video that introduced the Robot Blockly environment,
demonstrating how to write programs, manipulate the virtual
robot, and run programs. After the video, participants were
given a double-sided reference sheet that summarized the
information presented in the video, which was intended to be
used throughout the programming tasks to help remind
participants of features of the tool. After this introductory
portion, participants were put in front of a laptop running the
Robot Blockly environment (in the same configuration
depicted in Fig. 1) and given their first programming task: to
write a pick and place routine to pick up the blue block and
place it on the green pedestal. After completing this first
programming task, the environment was reset (meaning the
blue block was put back to its starting position and the
program was deleted) and participants were given the second
programming task: pick up the blue block, “dunk” it into the
silver container, and then place it on the green pedestal. The
idea behind the design of these tasks was to first ask
participants to author a conventional pick and place routine,
either with the Pick and Place Robot Recipe or on their
own, and then attempt to write a modified pick and place
routine, where additional steps are required. At the conclusion
of the programming portion of the interview, participants were
asked a series of questions about their experience working
with Robot Blockly. The programming and post interview
portions of the interview lasted an average of 33 minutes and
15 seconds combined and were recorded using software that
captured both the on-screen actions along with audio and
video using the laptop’s camera and microphone.

The data presented below are from 5 interviews conducted
with adults affiliated with an education research center in the
American Midwest. They were recruited through an
introductory email with the primary qualification for inclusion
in the study being that they have no prior programming
experience. Below we present preliminary findings,
documenting both successes and challenges identified through
analyzing the collected data.

V. FINDINGS
Given the small scale of the study, we briefly provide

summative data across the five sessions, then focus the
majority of our analysis on qualitative findings from the
interviews. The qualitative analysis first looks at successes of
Robot Blockly, then discusses challenges the participants
encountered.

All five participants were able to write a successful
program to carry out a pick and place routine (although some
technical issues prevent all successful programs from being

33

observed). One of these programs is shown in Fig. 1, with two
other programs that did not use Robot Recipes presented in
Fig.5. It is important to note that none of these participants
would have been able to complete a program using the
existing text-based programming language currently required
to control Roberta. Of the five participants, only one
successfully implemented the second task, with two other
participants starting the task but unable to complete it due to
technical issues with the software. Both of these participants
were able to verbally explain the programs they intended on
writing. Two of the five participants chose to use Robot
Recipes in their projects. When one of the participants who
chose not to use a Robot Recipe was asked why she chose to
implement the algorithm from scratch, she laughed, then said:
"I completely forgot about it, it's also fun to just try it out on
your own." At the conclusion of the interview, participants
were asked if they could see uses for this type of industrial
robot in their homes or in their professional lives. All five
participants gave meaningful responses, including tasks such
as folding clothes and compiling materials into folders in
preparation for teacher workshops.

Fig. 5. Two successful pick and place programs written by participants.

A. Successful Aspects of Robot Blockly
This small user study of the Robot Blockly environment

revealed a number of successful aspects of the design, as well
as some challenges that still remain. The successes included
(1) writing programs in a block-based environment, (2) using
Robot Recipes to help structure and complete the program, (3)
using Locations effectively to write a robot routine, and (4)
making it so that the programming was not seen as the
challenging part of controlling a virtual robot. We discuss
each of these four successes below, using data from the
interviews to illustrate each point.

The first success to note was that, as mentioned above, all
participants made progress towards writing a successful robot
program. As one participant reflected: “Once I got the steps
going, it seemed pretty easy. You just need to remember to tell
it to do everything, like things we take for granted, like
grabbing stuff, you got to make sure to tell it to grab, and then
pick it up and make sure to tell it to release.” What is
interesting about this quote is how this brief robot
programming task seems to have effectively conveyed one of
the central ideas about programming: the need to be explicit.

We also see the visual block-based programming approach
supporting the programmers in the same way as has been
reported in the literature. As one participant said during her
session when trying to add a Robot Recipe directly to her
program: “I wanted to put that under there but it is not going

to snap, I can see it is not going to snap." In this case, the
visual rendering of the Robot Recipe conveyed to her the
information that it could not be added to the program directly,
but instead, must be called with another block. Here, we see a
programming novice attend to both the shape and sound
associated with the blocks to explain how she knew what was
possible with the given command.

Fig. 1 shows a final program written by one of the
participants in the study. As can be seen on the left-hand side
of the environment, the participant used a Robot Recipe,
which she called First Task, to carry out the pick and
place routine. In creating the program, the participant dragged
out the Pick and Place block from the Robot Recipes
drawer, then systematically went through the Move commands
from top to bottom, defining and renaming each Location in
the program. When asked about the role of the recipe at the
conclusion of the interview, this participant said “I found the
recipe really helpful just as a template to start thinking about
it. It helped me, sort of solidify what the commands did and
what I could edit about them."

One of the more successful design aspects of Robot
Blockly based on the user study was the construct of
Locations. Four of the five participants renamed the Locations
with meaningful labels like Pickup, Dropoff, (as seen in
Fig 5) and the four Location names used in Fig. 1: Start,
Pick, Above, and Place. Further, two of the three
participants who worked on the second programming task
reused Locations they had defined for the first task. We view
these as promising findings suggesting the notion of
Locations, in conjunction with the natural language
expressiveness of block-based programming, as being a
successful design feature of Robot Blockly.

A final aspect of the robot programming task that we
observed in this study can be viewed as both a success and an
outstanding issue. Across all five interviews, the biggest
challenge for the participants was positioning the virtual robot
in the correct place. This fact is reflected in the breakdown of
time during the interview, with participants spending an
average of 4 minutes and 19 seconds working in the Blockly
pane compared to an average of 9 minutes and 25 seconds in
the Robot pane. Participants comments during the post
interview further support the interpretation of the robot
positioning being a major challenge. As one participant put it:
“it's frustrating to see if you're really over [the block]. That
was the hardest part for me.” We view this type of response as
successful in that the programming component of the activity
was not seen as the hard part. In this way, the block-based
design was successful in making the act of defining the
sequence of instructions for the robot accessible. As another
participant said: “So the writing the program part, I didn't find
that as hard, but moving things around on the screen was
harder.” However, we don’t view this feedback as a complete
success as positioning the robot arm is an essential part of this
type of programming task, so while block-based programming
helped with part of the challenge, there is still design work to
do to further lower the threshold to entry.

34

B. Remaining Challenges in Robot Blockly
While some aspects of the Robot Blockly were successful

in supporting our novice programmers, the user study also
revealed some remaining challenges. In this section, we
discuss four challenges we identified in our analysis of the
Robot Blockly interviews: 1) instances where participants
struggled with the block-based programming interface, 2)
conceptual issues related to initialization, 3) positioning the
robot arm, and 4) making clear the relationship between the
Robot pane and the Blockly pane.

First, while there were many successes related to adult
novices assembling instructions in the block-based interface, it
is important to note that the block-based authoring interaction
was not without its issues. For example, one participant really
struggled when trying to modify the Pick and Place
Robot Recipe to include extra steps for the dunk portion of the
second programming challenge. She started by trying to
modify the position of an already defined Location. After
redefining it, she went back to the recipe and clicked the
dropdown, got a confused look on her face saying “I want to
add a command,” and then explained how she had hoped
redefining the Location would introduce the extra step of the
recipe. Only after the interviewer intervened and showed her
how she can insert blocks inside the recipe by dragging-and-
dropping them into place was it clear how to proceed, with her
saying “oh, you can drag that one down, ok and then stick it in
there, ok.” This utterance suggests it was not clear that drag-
and-drop composition approach could be used to insert new
commands. The take away from this episode is a recognition
that there is still work to do on the design of both the interface
and the instructional materials to help novices understand the
block-based programming approach.

A second challenge matches a finding from prior work on
teaching younger learners to program and relates to the notion
of initialization [33]. The Pick and Place Robot Recipe
starts by telling the robot to open its hand before moving the
arm into place. At the start of our interview protocol, the robot
starts with an open hand. As a result, none of the participants
who wrote their own sequence of steps (i.e. did not use a
Robot Recipe) included the open hand command at the start
of their program. As a result, there were times when users
reran their programs but the robot’s hand was closed, causing
their programs to not work because the robot hand was closed
and could not pick up the block. Further, in the case of one
participant, she dragged the Pick and Place Robot Recipe
onto the canvas with the intention of using it, but upon seeing
it start with the open hand command, she deleted the recipe
and started writing her own routine that began with movement
commands. This outcome of novices not considering program
initialization has been documented in the literature as a
challenge faced by novice programmers [33] and highlights
another remaining design challenge for Robot Blockly.

The third issue we identified, which was mentioned
previously, relates to correctly positioning the robot arm in the
three-dimension workspace. Both the training video and the
Robot Blockly reference sheet included instructions on how to
navigate the three-dimensional space (including panning and

rotating the perspective as well as moving the robot arm and
hand), but these resources ended up not being sufficient.
Despite this instruction, all five participants spent substantial
time adjusting, and readjusting the robot arm. As one
participant said: “I had a little trouble navigating the screen
and dragging the robot arm around,” with another participant
echoing these sentiments: “That was the hardest part, just like,
moving the arm, just because I'm not familiar with it.”

A final challenge, related to the first, is making clearer the
relationship between the block-based programming interface
and the virtual Robot pane. In our design, when the user
chooses the Add Location option in the dropdown the
Robot Pane becomes active (as shown in Fig. 3a). A number
of participants (3 of the 5) moved the robot arm into place,
then went back to editing the program without finalizing the
Location definition (by clicking the done checkbox).
Unfortunately, in the prototype version of Robot Blockly used
in the interviews, returning to the program before finalizing
the Location definition often lead to the program falling into
an invalid state where the program could no longer be run.
This happened a number of times and prevented some
participants from having time to work on the second
programming task. This issue has already been resolved in the
most recent version of Robot Blockly.

VI. DISCUSSION
Having presented the design of Robot Blockly and some

preliminary results from a small-scale user study, we now
conclude with a brief discussion of the findings and next steps
for this line of work. The first take away from this study is the
promising results from bringing design innovations from the
creation of programming environments for young learners into
new novice programming contexts for older learners. This
strategy may become increasingly adopted as more
professionals, technologies, and activities incorporate
programming in some capacity. One emerging finding from
this study is that when presenting a virtual robot programming
task with a block-based interface, the largest hurdle was not
with the programming part of the task, but instead, was tied to
controlling the three-dimensional virtual robot on a two-
dimensional screen.

A second discussion point from this work is considering
how to design programming environments for adult novices.
Shifting the framing of introductory programming tools from
being designed for young learners towards being design for
programming novices of all ages may serve as a productive
first step for thinking about how to bring advances from
educational contexts to the wider set of potential users. That
being said, there are also clear differences between adult
novice programmers and younger learners. Understanding the
set of differences between these two sets of novice learners is
one line of research that is worth pursuing to better understand
how to design for adult novices. Such work has begun for
conventional text-based languages [34] but has not yet been
investigated for block-based introductory tools.

The work presented above serves as an initial investigation
into the potential of block-based programming for industrial

35

robots. As such, there are a number of future directions
planned for this work, both methodologically and in terms of
the design of Robot Blockly. On the methodological front, we
are in the process of designing a comparative study to better
understand how Robot Blockly performs relative to other
types of end-user robot programming tools. In terms of the
design of Robot Blockly, we are investigating better ways to
integrate the Blockly and Robot panes. We are also working
on building out a suite of Robot Recipes to include other
commonly performed tasks beyond pick and place. Finally, we
are beginning to develop educational materials to accompany
Robot Blockly and thinking about how Robot Blockly might
fit into existing vocational education contexts.

VII. CONCLUSION
 The ability to program is becoming increasingly useful in
our digital world. In response to this trend, a growing number
of introductory programming approaches have been developed
to make the task of programming more accessible and more
intuitive. Much of the design effort to date has focused on
younger learners in hopes of preparing them for future
computer science instruction. In this work, we seek to bring
those design innovations to the current landscape of industrial
robotics. In creating an accessible, block-based programming
interface for industrial robots, we hope to make the task of
programming such machines accessible to individuals who
otherwise would not be able to use them in their work.
Likewise, in recognition of the changing nature of the
workforce, especially in the manufacturing sector, tools like
Robot Blockly may be able to better prepare workers for the
increasingly technological nature of manufacturing and
industrial jobs. While there is still much work to be done, the
findings from this study suggest that block-based programming
may have a home beyond the classrooms and computer
clubhouse where it first grew up.

REFERENCES
[1] M. J. Hicks and S. Devaraj, “The myth and the reality of manufacturing

in America,” CBER Ball State University, 2015.
[2] D. Dorn, G. H. Hanson, and others, “Untangling trade and technology:

Evidence from local labour markets,” Econ. J., vol. 125, no. 584, pp.
621–46, 2015.

[3] R. D. Atkinson, L. A. Stewart, S. Andes, and S. Ezell, “Worse than the
Great Depression: What experts are missing about American
manufacturing decline,” Wash. DC Inf. Technol. Innov. Found., pp.
327–339, 2012.

[4] H. David, “Why are there still so many jobs? The history and future of
workplace automation,” J. Econ. Perspect., vol. 29, no. 3, pp. 3–30,
2015.

[5] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming: blocks and beyond,” Commun. ACM, vol. 60, no. 6, pp.
72–80, May 2017.

[6] A. F. Blackwell, K. N. Whitley, J. Good, and M. Petre, “Cognitive
factors in programming with diagrams,” Artif. Intell. Rev., vol. 15, no.
1–2, pp. 95–114, 2001.

[7] C. Duncan, T. Bell, and S. Tanimoto, “Should Your 8-year-old Learn
Coding?,” in Proc. of the 9th WiPSCE, NY, USA, 2014, pp. 60–69.

[8] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–137, 2005.

[9] A. J. Ko et al., “The State of the Art in End-user Software Engineering,”
ACM Comput Surv, vol. 43, no. 3, p. 21:1–21:44, Apr. 2011.

[10] T. Lozano-Pérez, “Robot programming,” Proc. IEEE, vol. 71, no. 7, pp.
821–841, 1983.

[11] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming
by demonstration,” in Springer handbook of robotics, Springer, 2008,
pp. 1371–1394.

[12] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian conference on robotics and
automation, 2003, pp. 1–10.

[13] B. A. Myers, “Taxonomies of visual programming and program
visualization,” J. Vis. Lang. Comput., vol. 1, no. 1, pp. 97–123, 1990.

[14] Lego Systems Inc, Lego Mindstorms NXT-G Invention System. 2008.
[15] R. Bischoff, A. Kazi, and M. Seyfarth, “The MORPHA style guide for

icon-based programming,” in Robot and Human Interactive
Communication, 2002. Proceedings. 11th IEEE International Workshop
on, 2002, pp. 482–487.

[16] D. Weintrop and U. Wilensky, “To Block or Not to Block, That is the
Question: Students’ Perceptions of Blocks-based Programming,” in
Proceedings of the 14th IDC, NY, USA, 2015, pp. 199–208.

[17] D. Franklin et al., “Using Upper-Elementary Student Performance to
Understand Conceptual Sequencing in a Blocks-based Curriculum,” in
Proc.s of the 2017 ACM SIGCSE, NY, USA, 2017, pp. 231–236.

[18] S. Grover, R. Pea, and S. Cooper, “Designing for deeper learning in a
blended computer science course for middle school students,” Comput.
Sci. Educ., vol. 25, no. 2, pp. 199–237, Apr. 2015.

[19] D. Weintrop and U. Wilensky, “Comparing Blocks-based and Text-
based Programming in High School Computer Science Classrooms,”
ACM Trans. Comput. Educ. TOCE, In Press.

[20] M. Resnick et al., “Scratch: Programming for all,” Commun. ACM, vol.
52, no. 11, p. 60, Nov. 2009.

[21] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for introductory
programming concepts,” J. Comput. Sci. Coll., vol. 15, no. 5, pp. 107–
116, 2000.

[22] A. Ioannidou, A. Repenning, and D. C. Webb, “AgentCubes:
Incremental 3D end-user development,” J. Vis. Lang. Comput., vol. 20,
no. 4, pp. 236–251, Aug. 2009.

[23] A. Begel and E. Klopfer, “Starlogo TNG: An introduction to game
development,” J. E-Learn., 2007.

[24] M. S. Horn, C. Brady, A. Hjorth, A. Wagh, and U. Wilensky, “Frog
pond: a codefirst learning environment on evolution and natural
selection,” in Proceedings of IDC, 2014, pp. 357–360.

[25] M. H. Wilkerson-Jerde and U. Wilensky, “Restructuring Change,
Interpreting Changes: The DeltaTick Modeling and Analysis Toolkit,”
in Proc. of the Constructionism 2010 Conference, Paris, France, 2010.

[26] W. Slany, “Tinkering with Pocket Code, a Scratch-like programming
app for your smartphone,” in Proc. of Constructionism, Austria, 2014.

[27] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor 2:
Create Your Own Android Apps, 2 ed. Beijing: O’Reilly Media, 2014.

[28] S. Esper, S. R. Foster, and W. G. Griswold, “CodeSpells: embodying the
metaphor of wizardry for programming,” in Proceedings of the 18th
ACM ITiCSE, 2013, pp. 249–254.

[29] D. Weintrop and U. Wilensky, “RoboBuilder: A program-to-play
constructionist video game,” in Proceedings of the Constructionism
2012 Conference, Athens, Greece, 2012.

[30] J. Maloney, M. Nagle, and J. Mönig, “GP: A General Purpose Blocks-
Based Language,” in Proceedings of the 2017 ACM SIGCSE, New
York, NY, USA, 2017, pp. 739–739.

[31] D. Bau, “Droplet, a blocks-based editor for text code,” J. Comput. Sci.
Coll., vol. 30, no. 6, pp. 138–144, 2015.

[32] N. Fraser, “Ten things we’ve learned from Blockly,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), 2015, pp. 49–50.

[33] D. Franklin, C. Hill, H. Dwyer, A. Hansen, A. Iveland, and D. Harlow,
“Initialization in Scratch: Seeking Knowledge Transfer,” in Proceedings
of the 47th ACM SIGCSE, 2016, pp. 217–222.

[34] P. J. Guo, “Older Adults Learning Computer Programming:
Motivations, Frustrations, and Design Opportunities,” in Proceedings of
CHI 2017, pp. 7070–7083.

36

